Multi-level facility location as the maximization of a submodular set function

نویسندگان

  • Camilo Ortiz-Astorquiza
  • Ivan Contreras
  • Gilbert Laporte
چکیده

In this paper we model the multi-level uncapacitated facility location problem as two different combinatorial optimization problems. The first one uses a set of vertices as combinatorial objects to represent solutions whereas the second one uses a set of paths. An interesting observation is that the real-valued set function associated with the first combinatorial problem does not satisfy the submodular property, whereas the set function associated with the second problem does satisfy this property. This illustrates the fact that submodularity is not a property intrinsic to an optimization problem but rather to its mathematical representation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentially Private Submodular Maximization: Data Summarization in Disguise (Full version)

How can we extract representative features from a dataset containing sensitive personal information, while providing individual-level privacy guarantees? Many data summarization applications are captured by the general framework of submodular maximization. As a consequence, a wide range of efficient approximation algorithms for submodular maximization have been developed. However, when such app...

متن کامل

Forthcoming in Mathematical Programming MAXIMIZING A CLASS OF SUBMODULAR UTILITY FUNCTIONS

Given a finite ground set N and a value vector a ∈ R , we consider optimization problems involving maximization of a submodular set utility function of the form h(S) = f (∑ i∈S ai ) , S ⊆ N , where f is a strictly concave, increasing, differentiable function. This function appears frequently in combinatorial optimization problems when modeling risk aversion and decreasing marginal preferences, ...

متن کامل

Maximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...

متن کامل

Guaranteed Non-convex Optimization: Submodular Maximization over Continuous Domains

Submodular continuous functions are a category of (generally) non-convex/nonconcave functions with a wide spectrum of applications. We characterize these functions and demonstrate that they can be maximized efficiently with approximation guarantees. Specifically, I) for monotone submodular continuous functions with an additional diminishing returns property, we propose a Frank-Wolfe style algor...

متن کامل

Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 247  شماره 

صفحات  -

تاریخ انتشار 2015